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ABSTRACT

The effect of small amplitude, time-periodic, freestream disturbances on an

otherwise steady axisymmetric boundary layer on a circular cylinder is considered.

Numerical solutions of the problem are presented, and an asymptotic solution,

valid far downstream along the axis of the cylinder is detailed. Particular

emphasis is placed on the unsteady eigensolutions that occur far downstream, which

turn out to be very different from the analogous planar eigensolutions. These

axisymmetric eigensolutions are computed numerically and also are described by

asymptotic analyses valid for low and high frequencies of oscillation.
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1. Introduction

The effect of time-pcriodic disturbances in the freestream of an

otherwise steady boundary layer has received considerable

attention over the years. This work was initiated by Lighthill (1954),

who considered the flow past a semi-infinite fHat plate, with a small

amplitude, time-periodic frecstream disturbance, and obtained solutions

close to and far from the leading edge. This work was latcr cxtended

by Roil aid Rosenwcig (1960), Lam and Roll (1960) and Ackerberg and

Phillips (1972). Of particular interest are the unsteady cigcnsolutions

that form part of the far-downstream flow. One set of these was

studied by Lam and Rott (1960), Ackcrberg and Phillips (1972) and

Goldstein (1983) and has exponentially decaying solution downstream (see

(8.1) below), with the feature of dccieasing decay rate with iQ.r..a in.g

order; these cigcnsolut ions are determined primarily by conditions close

to the wall. A second set of cigcnsolutions was constructed by Brown

and Stewartson (i973a,b) and has the feature of increasing decay rate with

increasi order; these eigensolutions are determined from conditions far

away from the wall, in the outer reaches of the boundary layer.

Indeed, these seemingly divcrse characteristics of the cigcnsolutions

have been the subject of some controversy over the years. Ilowever,

Goldstein et al (1983) include a quite detailed discussion of this

dichotomy; briefly, these aulhors expound the argument that the two sets

of eigcnsolutions are in fact, equivalent, but with the Brown and Stewartson

(1973 a,b) expansions being valid at much longer distances

(O(ln I x)i >> 1) downstream, than the Lam and Rott (1960) cigcnsolutions

(which are valid for O(x) >> 1). Further, Goldstein et al (1983) point

out that as the order of the Lam and Rott (1960) eigensolutions increases,

the asymptotic behaviour of the (inner) solution is likely to be achieved

at progressively largzr values of x, since, for x >> 1, the scale of the
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region associated with the eigensolutions moves away from the wall with

increasing order. This, in some ways is not inconsistent with the fact

that the Brown and Stewartson (1973a,b) eigensolutions are centered at the

outer edge of the steady boundary layer. Goldstein et al (1983) also

conclude, using these arguments, that the limit as x -- - and the limit

as n -4 - (where n is the order of the eigensolution) cannot be

interchanged. However, and significantly, Goldstein (1983) went on to

illustrate the physical importance of the Lam and Rott (1960)

eigensolutions, by showing how these develop, far downstream, into unstable

Tollmien-Schlichting waves.

The problem of ''order-one'' unsteady, freestream disturbances (but

such that the freestream does not reverse direction) has been tonsidercd

by a number of authors. Pedley (1972) considered this problem,

asymptotically close to and far from the leading edge, whilst Phillips

and Ackerberg (1973) presented numerical solutions to the problem for

locations from the leading edge to far downstream, their method being

based on a time-marching scheme. More recently, Duck (1989) presented

a new numerical method to tackle this problem, based on a spectral

treatment in time, and a spatial finite-difference scheme, which properly

takes into account regions of reversed flow that inevitably occur.

The problem of steady flow along a circular cylinder (in particular

far downstream along the axis of the cylinder) is itself interesting, partly

because it is so very different in nature from that of planar (i.e. Blasius

type) flow. Early investigations of this problem include the work of

Glauert and Lighthill (1955) and Stcwartson (1955), whilst Bush (1976) has

presented a more modern approach to the problem. Notably, in the far

downstream limit, the problem becomes double structured, with an inner

layer (comparable in thickness with the radius of the body) which is

predominantly viscous in nature, and an outer layer (much larger than the
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radius of the body) which is a region of predominantly uniform flow (see

Section 4 for fuller details).

In this paper we investigate the effect of small amplitude, time-

periodic, frccstrcam disturbances on the axisymmetric boundary layer on

a circular cylinder. Particular emphasis is placed on the cigensolutions

relevant to tic far-downstream flow, which turn out to be markedly

different from the analogous planar eigcnsolutions of Lam and Rott (1960),

and possess sonic interesting properties. Further, since an additional

lcngthscale is present in the problem (i.e. the body radius), a second

non-dimensional parameter (in addition to the Reynolds number) is present,

and we arc able to exploit this parameter from an asymptotic point of view.

The layout of the paper is as follows. In Section 2 the problem is

formulated, and in Section 3 a fully numerical finite-difference scheme

for the steady and unsteady problem is described, and results for the wall

shears are presented, for axial locations from the leading edge to far

downstream. In Section 4 the development of the (inhomogeneous) component

of the flow is described. In Section 5 the presence of eigensolutions far

downstream is elucidated, the cigenproblem is formulated and expanded in the

form of an asymptotic series. In Section 6 numerical solutions of the

(leading-order) cigenproblem arc described, whilst in Section 7 the

cigenproblem is considered in the asymptotic limits of high and low

freestream oscillation. In Section 8 the conclusions of the paper are

presente(l.
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2. Formulation

We introduce a cylindrical polar coordinate system (ar, 0, az), where

a is the radius of the body (assumed constan), and the z axis lies

along the axis of the body, with z = 0 corresponding to the tip of

the body.

Suppose that the fluid is incompressible and of kinematic viscosity

v, the freestream velocity is taken to be purely in the z direction,

and of the form Woo(l+B cos ct*), where W.,, 5 and 0) arc constants,

with 8 << 1. Note that although in all the ensuing analysis we shall

confine our attention exclusively to freestream velocities of the above

form, it is relatively straightforward to extend our ideas to other

spatial and temporal (periodic) variations.

The velocity field is written as W,, (u,0,w), and non-dimensional time

as t = (ot*. Further, it is assumed that u,w, and indeed the entire

solution is independent of 0, implying axial symmetry.

In this problem there are two fundamental non-dimensional parameters,

namely a Reynolds number based on cylinder radius

R= -, (2.1)
V

which will be assumed to be large throughout this paper, together with

a frequency parameter

_ v(2.2)
Coa2

The usage of the boundary-layer approximation requires (hat

Z = R-1 z (2.3)

is the key axial lengthscale, and

U = Ru (2.4)

is the important order-one radial velocity scale. The boundary-layer

equations then become (to leading order)
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Sw + w w + U aw + aw +I aw (r 4  ) (2.5)

at az ar ar 2  r ar 3at

together with

a a(rw) + U (rU) = 0. (2.6)

Since it will be assumed that 8 << I, the unsteady component of the flow

may be taken to be a small perturbation about the steady solution

(a similar treatment has been used in many of the related planar studies

cited in the previous section, for example Lam and Roll 1960, Lighthill

1954, Ackcrbcrg and Phillips 1972). Specifically

U(r,Z,t) = U0(r,Z) + 8 Re (U(rZ)eit) + 0(82), (2.7)

w(r,Z,t) = wo(r,Z) + 8 Re {((r,Z)cit) + ((82) ,  (2.8)

The steady component of the solution is described by

w 2) + UO W = l2 w0 + 1NO, (2.9)
aZ ar a r 2  r or

aa
(r wO) + U- (rU) = 0, (2.10)

with w0(r=l) = U0(r=l) = 0,

w0  --- 1 as r -- ,, (2.11)

whilst the unsteady perturbation to this flow is given by

+ wo a; + ; 2 + UO 2w + awo a 2w + l aw + i

1 az az ar Dr ar2  rar a

(2.12)

a - a9 (rw) + (rU) = 0, (2.13)

subject to

w(r=l) = U(r=l) = 0,

w -1 as r --4 (2.14)

To close the problem we further suppose that as Z 4 0, planar

conditions prevail, with the boundary-layer thickness becoming

negligible in this limit. A similar procedure was followed by Seban and



Bond (1951) and was further utilised in a related problem by Duck and

Bodonyi (1986). The (steady) system (2.9) - (2.11) then reduces to the

Blasius (planar) problem as Z -4 0, with corrections due to curvature

effects given by Scban and Bond (1951). As Z -4 -, the far downstream,

double-structured solution of Glaucrt and Lighthill (1955),

Stcwartson (1955) and Bush (1976) emerges from this system.

Regarding the unsteady system (2.12) - (2.14), this becomes quasi-steady

in form as Z -4 0, with the time derivative term vanishing in this limit.

In the following section fully numerical solutions to both the steady

and unsteady system and considered, and in the later sections of this paper

the far-downstream behaviour of the unsteady component of the flow is

investigated in some detail.
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3. Numerical solution of the problem.

In this section we consider fully numerical solutions to systems

(2.9)-(2.11) and (2.12)-(2.14).

Two streamfunctions arc introduced, one for the steady component of

the flow, the other for the unsteady component, viz IF and ', respectively

givcn by

Uo = U 7.' wo = 7 dr' (3.1)
-i - a (3.2)r M' = 7 •1r

The problem determining P and i is then

'Prrr +
r r2

= r Tr TrZ "TZIT rr - F2 'Pr],(33

1 rr + r [Tr irZ + ir 'PrZ]rrr "r r

r r2  r

+ i V ir(3.4)

with TP = Pr = i = r = 0 on r = 1, (3.5)

Tr, 'r -4 r as r - -4 (3.6)

Anticipating a Blasius-type solution as Z -- 0, the problem for

0 < Z - I was cast in terms of

= (r-l)/Zi, = Z1, (3.7)

as the independent variables, with the dependent variables taken as

F0  and F, where

'P = FO (i,;). j = ;F(I,;) (3.8)

For Z > 1, T(r,Z) and i(r,Z) were treated as the unknown variables.

In both Z 5 1 and Z > I the systems were written as a system of

first order equations in r (or H). laving solved the problem for
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Z = 0, a Crank-Nicolson procedure In Z (or ) was adopted. Overall,

the numerical differeicing scheme was based on that of Keller and Cebeci

(1971). At each Z (or ) statlos, first the steady system was

computed, with Newton iteration being used to treat the non-linearity

in the problem. Once convergence was achieved, the (lincar) unsteady

system was then computed in a straightlforward manner.

Results for Trr 'r=I (essentially the steady component of wall shear)

along the cylinder are shown in Fig.l. This illustrates the (Blastus-typc)

singularity as Z -, 0, together with a monotonic decline as Z increases.

Figure 2 shows the results for the real and imaginary components of

irr lr= 1 (essentially the unsteady component of wall shear) for 0 = 0.25.

This shows how the real component exhibits an inverse square singularity

as Z -- 0 (in line with that of 'err lr=I) whilst the imaginary

component drops to zero at the leading edge. This occurs because as

stated previously, as Z -. 0, the system determining F(i1, ) becomes

quasi-steady, with the unsteady velocity perturbation moving entirely in

phase across the boundary layer. For Z > 1, both the real and imaginary

components rapidly approach constant values. This aspect is dealt with

in the following section.

Figures 3,4 and 5 show the corresponding distributions for

j3 = 1,2 and 5 respectively, all of which exhibit similar qualitative

features to the I0 = 0.25 results, although the asymptotic amplitude

of irrlr= is seen to diminish as f3 increases. In the following

section the asymptotic form of the flow structure, far downstream of

the leading edge is considered.



4. The far downstream development of the flow.

In this section we investigatc the Z >> I solution for the

(unsteady) system (2.12)-(2.14). It was-shown by Glaucrt and Lighthill

(1955), Stcwartson (1955) and Bush (1976) that the steady solution

obaincd from (2.9)-(2. 11) divides into two layers Far downist ream.

Specifically, for r = 0(l) it was shown that

T n  (r)n=O Oil(

,. n+2
+ X n~r

11 2

+ 0 (Z2), (4.1)

where E = 2 (4.2)

log Z'

and where

TOn(r) = KOn {jr 2 log r r2 +

Ko= 1, KO =(Y - log 2),

y = 0.5772 .... (Eulcrs constant). (4.3)

O = Kl I1 r2 log r - r2 +

7
K10 = ;T (4.4)

(Note that in Stcwartson 1955, the last term in his equation (3.20) should

be a logarithmically squared term, and not as shown). It is also found

r r

I[ r fa' [o

l(r) = -Koor log r J { 2I-r - ['i(00 r -l] ]drldr

1 2T0

r

+ K(or log r J 1 d. dr + KII r log r, (4.5)
I "o00

implying that for r >> 1,
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4 2-n
I E ajn rJ (log r)
j=0 n=O

(4.6)

Consider now the outer layer, wherein

I = r/Zi = 0(l) (4.7)

(consistent with (3.3)), wherein

T = Z { 'oo0n) + 'lo,(,) + 0(E2 ) }

+ C2 '10(11) + 0(E3). (4.8)

it is found j00(1) = 112,
11 _ITx2

+ e -1
2 - 1,

^+o0) = 'l('oiO) - i. (4.9)

For comparison with our fully numerical results, asymptotic

approximations to the basic flow determined from

"rr 7rl E 'TOOrr (r=l) + E2 '()lrr (r=1)

' e + K0 1 E
2  (4.10)

are shown on Fig.l as a broken line.

Now consider the Z , I solution to tie system given by

(2.12)-(2.14). This turns out to be quite straightforward. Consider

first (and most importantly) the radial scale r = 0(l); then due to the

smallness of c., w is expected to develop as

w(r,Z) = wo(r) + o(c), (4.11)

where wo is to be determined from

+ ( Iw __ (4.12)
ar2  r or 13

the appropriate solution of which is simply
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wo(r) = I , (4.13)

HO(2)LJ

i.e. thc axisymmetric Stokes shear-wavc solution, where HOl( 2 )(z) denotes

thc sccond Hankcl function, of order zcro and argument z. Note also that

as J3 -* 0, the planar Stokcs shear solution is retricved (in accord with

the work of Ackerberg and Phillips 1972). In this limit, a thin Stokes

layer forms on the surface of the body and consequcnt ly curvature

effects become less important.

It is a routine matter to continue this solution to higher orders

of e; however little additional insight is gleaned from this, and instead

we go on to consider (briefly) the outer layer, where TI = 0(1) (see

(4.3)).

Writing

w0(11) + C wl() + 0(£2), (4.14)

then

wo(11) = 1, (4.15)

w (1 ) = w2 (11) = .. = 0. (4.16)

In fact the correction to w0 (1) can only he algebraically small in

Z-1.

Results obtained using this asymptotic structure (in particular

(4.8)) are shown for comparison with the fully numerical results as

broken lines on Figs. 2-5; the agreement is seen to be satisfactory.

However, since the Z >> I structure detailed above is obtained

without any recourse to upstream conditions, there must be a further

element to the downstream flow, not reflected in the above analysis

(see also the comments of Ackcrbcrg and Phillips 1972). This

arises from eigcnfunctions of the system (2.12)-(2.14). This aspect

is investigated next, in some detail.
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5. The form of the eliensolutions as Z -...

Here the form of (exponentially small) eigensolutions

as Z--, is sought. Specifically, we investigate eigensolutions of

(3.4), with the basic flow described by Section 4.

As a first approximation to thc form of these cigensolutions,

consider the scale r = 0(1), and suppose TI in (3.4) is replaced by

e1Po(r), and terms 0(y) and smaller are neglected. This yields

"rrr :WU + 'OOr irZ

C YZ r (5.1)

Assuming a solution for by scparation of variables, namely

= f(Z) y/(r), (5.2)

then

Wvrrr -rr + r- i

" I {TOO r Vr + W I 1 l1r r

0 0. (5.3)

A solution of the assumed form is possible only if

fz + A f = 0, (5.4)

where A is a constant. Recalling the definition of c in (4.2),

(5.4) integrates to give

f(Z) =cxp{-7 IZ log Z-ZI}

A zA
= Z ez*Z. (5.5)

Here it is required that Re(A) > 0 to ensure decay as Z -- * , and

the arbitrary multiplicative constant in y(r) has been included.

However (5.2) and (5.5) are correct only to leading order in e

and Z. It turns out the form of i required for r = 0(1)
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is

= h(Z) f(Z) Zp (log Z)q {jygo(r)

+ e V1()(r) + 0(E 2 )

+ le I jl()(r) + O()(2)1

+ O(l/Z 2)}, (5.6)

where f(Z) is given by (5.5) and h(Z) is smaller than any power of

log Z. Further it is found necessary to expand A itself in terms of

ascending powers of e, viz

A = A0 + A1 + C2 A2 + 0(E3 ). (5.7)

p and q are constants to be determined at some later stage. In view

of our comments regarding Re(A), then Rc(A)) > 0. The form of (5.6)

and (5.7) is necessitated because of the series development of the

basic flow in powers of e and I/Z, and is found to be essential for

solubility at higher orders of the solution. (Indeed Goldstein 1983

pointed out the omission of algebraic terms in the streamwise development

of the planar eigensolutions in the work of Ackerberg.and Phillips 1972,

which contained only the exponential development of the flow).

Substitution of (5.6) and the results of Section 4 into (3.4), and

taking terms 0(11(Z) Z ZI (log Z)(1I yields the fol lowing

equation for V00

L{TO0} = 0, (5.8)

where

L{ of)) W-= -' " + oo I r2 r 0

- AO yo( [ TM'

(5.9)

Recalling the form of 40(), given in (4.3), then
I

L = 10 +)' W2- ++ A0 log rr r p

AO YO = o. (5.10)
r
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The boundary conditions to be applied to this system are those of

no-slip and impermeability on r = 1, i.e.

y00 (r=l) = V00' (r=l) = 0, (5.11)

whilst as r W ()0 should not be exponentially large. To be

more precise on this last point, the three lincarly independent solutio.ns to

(5.10) in this limit take the form

()A AO0 A flog r - (5.12)

r

if lAO log r 11 dr

Bc 1 (5.13)wo (log r)3/4 (.3

r

-if IA1 log r 11 dr
woo A OC  c1 (.4

(log r)3/4

Clearly either one of (5.13) or (5.14) is inadmissible (if A0  is complex)

due to the r >> I condition, and so

oo() = A00 [log r - i + 2

PAO r2 A0 log r

+ 0( 1 ] (5.15)
r2 (log r)

2

in this limit, where A00  is an arbitary constant (amplitude). The

system (5.10) , (5.11) and (5.15) represents an eigenvaluc problem for

A0 . However we defer discussion or this problem until the following

section (where a detailed investigation is carried out of this aspect).

Instead, let us turn to consider higher order terms in the expansions

(5.6) and (5.7). Taking terms

0(1h(Z) Z e " Zp  (log Z)('1-

in (3.4) yields
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Lio)= Al I- '4YOO 00' + woo . YLi' ! J

+ AO { lo "P I L..Q + WVOO(~ '

r r r2

(5.16)

lowever, on account of (4.3) this equation may be written as

L{iOl} = (Al + KoIAO) { " ooiLPoo,
r

+ ' [0 v°°'l}. (5.17)
v r Yr2  (517

The boundary conditions for this system arc essentially the same as

those for W(O0; these can only be satisfied if

Al = - KO A0 , (5.18)

implying that

uiOl(r) = A0 1 Voo(r), (5.19)

where A0 1  is a constant (amplitude). It is straightforward to

determine higher order terms in the A expansion, in a similar fashion.

For example

A2 = AO K0 1
2 - AO K02 - j KO1 A0  (5.20)

and hence

W02 = A02 iVo0 (r). (5.21)

Indeed, the following general result is applicable

'VOn = AOn V()(r). (5.22)

To progress further, in particular to determine terms that arc

0(Z- 1) smaller than those considered already, let us investigate terms

O[h(Z) Z AZe "  Z (log Z)q ' )

in the governing equation. This yields the following equation for 'ly0

L(VI() = p R1 - A0 R2 , (5.23)

where

15



R= wo0 "Poo,+ woo ! -0U0'

r r2 r

R2 =v0' ?1' + oT0o' 40() ' (5.24)

r r2  r

In view of (4.4)

0 I KIO I (), (5.25)

and so

R2 = KIO R1 . (5.26)

Repeating the arguments used to determine A1  and A2 previously,

then

p = A0 K 1

7
z . A0. (5.27)

Finally for this section, let us consider briefly the outer solution,

applicable to the qI = 0(1) scale. In view of the r = 0(1) solution,

in particular its 0(log r) behaviour as r -- -, together with (5.6),

then for Ti = 0(l) the solution is cxpccted to dcvclop in the following

form

j(Tjz) = g(Z) h(Z) ZP (log Z)I {()(1E) + ,i(m

+ 0(Z- 2 )}, (5.28)

whe re

g(Z) = f(Z)/E. (5.29)

It is then possible to obtain an exact solution for j0 which

matches on to the r = 0(l) solution. This is given by

VO=AO I AO l (5.30)

where A0 is a constant, and

o = I Cn On0). (5.31)

n=O

If we now expand
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Vo en ion(,), (5.32)

n=O

then it is straightforward to show that

j(oo = A00 , (5.33)

(which matches on to (5.15)), and

*01 = A00  + A01, (5.34)

where A0 1 is an arhitary constant. Other terms may be obtained similarly.

In the I'ol lowing sect ion we go on to cons idcr numerical solutions

to (5.10). The value of q is determined in the Appendix.
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6. Numerical solutions of the eigenvalue problem (S.I0M-(5.11,

The problem was tacklcd using three separate numerical techniques.

The first comprised a fourth order Runge-Kutta technique, shooting

inwards from r = r. (chosen to be suitably large). In particular.

the techniquc involved (i) imposing a solution or the form (5.12)

at r., generating values of i 0 A (r = 1) and VOOA' (r=l) and then

(iH) imposing a solution of the form (5.13) at r. (or 5.14) depending

on the sign of Rc{iAoi}), generating values of 4OOB (r=l) and

V()(B, (r=l) (or WOO C (r=l) and WO0C' (r=l)). The value of

A0 was then chosen by Newton iteration by imposing (5.11), by forcing

the determinant

WOOA (wr=) ,0(B (r=l)
(6.1)1y00A '  (r=l) VO0B '  (r-l )

or

WOO 0A (r1 ) W00 C (r=l )
( 0A, (r=l) WoO1C' (r=l) (6.2)

to zero.

The second numerical scheme employed involved using a second-order

finite-diffcrcncc approximation to (5.10), constructing a quadra-diagonal

system (corresponding to the approximation to (5.10), together with the

boundary conditions (5.11), (5.15)) and the determinant of this system was

rorced to zero by adjusting A0  by Newton iteration.

The third numerical scheme used was a direct (global) finitc-diffcrencc

approach; using the same finite-difference scheme as our second scheme,

the system was instead written in the form

A - AO B = 0, (6.3)

where A and B are both square matrices. The A0  were determined

18

_ • • _-A



by using NAG routine FO2GJF, suitable for solving gcneralised eigenvalue

problems of this kind. This scheme has two distinct advantages

(i) of not requiring iteration and (ii) gcnerating multiple values (if

present) of A0  simultaneously, however it can require substantial

computer storage.

Results from all three schemes were found to agree, in practice the

procedure was usually to obtain estimates to the values of A0  using the

third scheme. If these wero. then dccmcd or to be insufficient accuracy,

enhanced solut ions (obtained on a Finer and/or more extensive grid) wcrc

obtained using the second scheme (i.e. the local finite-difference

scheme).

Results were obtained for a range of I3. It was found that at all

the values of 3 investigated, there are many (probably an infinite

number) values of A0 . Further all three methods did yield a large number

of spurious modes. However these were usually readily identifiable, being

strongly dependent upon. grid size and range, whilst genuine modes were

com..ratively grid insensitive.

Results for Rc{Ao} are shown in Fig.6 and for Im{A 0} in Fig.7.

Just the first four modes are shown in each case - higher modes become

extremely difficult to compute (and, indeed distinguish from each other

and a!so the previously described spurious modes), particularly

in the limiis oif P - - and P -4 0. However [hc trends are clear, namcly

that IAo1 -- - as P -- 0 and IAOI --4 0 as [i - w, for all modes.

In the following section we invcstig'ite these two limits asymptotically.
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7. Asyptotic solutions of the eigenvalue problem (5.10'

In this section the limits f -. and P--.4 0 in

equation (5.10) are considered, for which so'ie analytic progress is

possible.

7.1. The limit 

Physically, this corresponds to a low frequency limit to the

problem. The numerical resul ts presented in the previous section

indicate that (all the) A0 --4 0 as -- 4 -. Consequent ly iif r = 0 (1),

then to leading order (assuming AO = o(1))
VOO tit _0Mf' + 2' = o,

r r2

with ()O (1) = WO00' (1) = 0. (7.1)

The solution to this system is then

oo = Bo (r2 log r - r2 + 1 (7.2)

where B0  is some arbitary constant. This solution must ultimately

cease to be a valid approximation to (5.10) as r .. , specifically when

r = O(AOi). Considering the particular development of A0  as P -4 ;

this is found to take on the following form, in order to obtain a consistent

and meaningful asymptotic solution

A0 = (P) IX) + E X + 0(;2)1, (7.3)

S 2
where C= 2 (7.4)

log y

and 7(p) must bc determined from

i log G-1) = p-I (7.5)

This is a transcendental equation for the small parameter y (see

Duck 1984, Duck and llall 1989 for similar examples), In order to obtain

a meaningful balance of terms when r = O(AO-), it is necessary that

X(0 = i (7.6)

(the leading term in the expansion for AO).
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In view of these comments, and the above comments regarding the scale of

r for which (7.2) ceases to bc a valid approximation to (5.10), we

dcfine the outer lengthscalc

p = ji r = 0(l), (7.7)

wherc the following problem must be considcred

Xppp - Xpp I Xp [ !2 + log P + XJ

iX = 0, (7.8)P

with

X Cl [log p - i X11 as p..,

X= 0 (p2 ) as p .0, (7.9)

where c1  is an arbitary constant, and X is related to 14() by

- Y Woo. (7.10)

log i

The system (7.7) - (7.8) represents a well-posed cigenvalue problem for

the ,l's which was solved using the three numerical techniques described

in the previous section (indeed (7.8) is very similar-to (5.10), and is

of about the same computational complexity, save for the absence of any

physical parameters).

Values for the first few X's are tabulated in Table I (accuracy

to at least the number of digits shown). It appears that all the

XI's possessed the same real value (and hence decay rate) to within the

accuracy of the computation. The evidence was that a large (probably

infini te) number of these modes cxist. these higher modes were di fficul t

to compute accurately, requiring small grid sizes and extensive grid

domains. Further, with increasing order, the imaginary part of the Xl'S

became progressively more negative, although the (iference between modes

did diminish. Indeed, Ihcsc I rends can be confi rmed, asymptotically,

by carrying out a IX1i >> I analysis on (7.8)-(7.9). In this

limit, a WKB solution to (7.8) exists of the form
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BiP JI i ilgp+ 'll| dpBP

Si iogp+X !13/4 P

+ cllogp+ix.1 (7.11)

for Re (logp-iXI} > 0 (and the path of integration lies within this

region) where

Po = , (7.12)

(and we expect c! = o (01)), whilst

X = cIlogp-ixI

+P
PI i ilogp+A I II dp

liilogp+.13/4 I A1 c

P

*J itilogp+X111 dp

+ A2  }
(7.13)

for Re (logp-iX l < 0 (and the path of integration lies within this

region).

A routine treatment of the transition layer about p = PO

reveals

A2 = iA1 . (7.14)

To proceed further, consider an inner layer wherein

P1 = Xl1 P = 0(1), (7.15)

with X satisfying the rollowing equation to leading order

x - I x + Xp + 1) = 0, (7.16)
P1

the solution of which is

I
xPl = B0 p1 "0 (P), (7.17)

(the second solution of this equation involving Y0 (pl) is neglected
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on account of (7.9)). Taking the limit of (7.17) as Pl - gives

xPI- BO COS (PI :) (7.18)

The limit of (7.13) as p -4 0 is

x -4 c1 flogp-ix.jj

+ A PI ell c{ alp ic 21+ilip } (7.19)

whe rc

11 J ilogp+XjII dp, . (7.20)

with the integration path lying within Re (logp-iR1 ) < 0. 1! (7.19)

is to match with (7.18) then

e -2 (7.21)

which leads to

XI= T hog 12 ../xnJ, (7.22)

where n is a (large) positive integer. For consistency, we also require

B0 = 2i 'nA 0. (7.23)

The formula represented by (7.22) was used to obtain asymptotic

estimates to the results shown in Table 1. Mode 11 corresponds to

n = 1, mode III corresponds to ni = 2 andl so on; it is seen thc

agreement between the computed asymptotic results is most satisfactory,

i= 0. 785 ...) It is quit Icleiar that this asymptotic form will fail when

n = j1.

The leading order terms, namely Rc(AO) y and Im(AO)

are shown on Figs.6 and 7 respectivcly, for comparison with the

numerical solutions obtained from the full equation, (5.10). The

results arc not contradictary, given the "largeness" of thc small

parameter e.Indeed, computations for A0 from (5.10) at larger
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values of P (lid become exceedingly difficult, due to the large

lcngthscale (0(j-1)), together with mode "jumping" caused by the

close proximaty of modes, which mtdc the use of grid refinement with

the local method impractical.

7.2. The Iimit .--. ,

This corresponds to the high frequency limit of the problem.

According to the numerical results presented in Section 6 A01 increases

as 0 -4 0. This limit is now investigated.

It is possible to write a WKB-type approximate solution to (5.10)

(assuming iA() and -1 arc both large) as

r= B, [log r - ]
r

+ [Ao ~ rJA log r I'r R if IA lr *1 id

+ B3 e l (7.24)

(for Re (Aoiogr - I < 0, and the pali of integration lies within

this region), where

22il {i 3/2

B3 = . 3/2 A (7.25)
- + AO

BI = A0  - ilJ [ B2  ell + B3  c if ], (7.26)

and ro= eXl' [ p ] (7.27)

is the turning point, and
ro

=- I [AO log r- d (r. (7.28)
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(7.25) and (7.26) arc obtained by imposing boundary conditions on r = 1,

and the integration path lies within Re {Aologr - < 0.

For Re (Aologr- 1) > 0 the WKB-type approximate solution can be

wri t ten

v()((r) = B [log r- 2 ]

r I
+ B4r, (7.29)

AO log r 15/d

where it has been assumcd Re{(-AO)I} < 0 (otherwise we require the

negative root inside the integral), BI is given by (7.26), and the

integation path lies within Re (Aologr - > 0. In order that

(7.29) matches to (7.24) across the transition layer of thickness

O(Ao'1/3), (routine) treatment (see also the analysis for A0 = 0(P- 3 / 2

below) of the latter yields

BI = - iB2 , (7.30)

and the following dispersion relationship for A0  results

[ . 3/2 - A 21 i - 3/2 A0 }. (7.31)

It turns out that there are two distinct families of' solution as

P ---+0.

The first family of solutions as P --4 0 corresponds to A0 = 0(1 1) .

More specifically

A0 = 3-I [ 0 +11 A, +"" J' (7.32)
A

where A0 , A1  are generally 0(1) quantities. This implies that

ro-1 = 0(1). Consequently to leading order (7.31) reduces to
2il
e = -1. (7.33)

However it appears I = 0(0r"f), and so there is a contradiction,

which can only be avoided if
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ro

IA( log r - ijl dr -0,O, (7.34)
I

or

A0J eP p i dp 0 
(7.35)

0

or
3i

AO)

where Y(zl,z 2 ) represents the incomplete gamma function. This represents

an eigenvalue problem for At), which was solved numerically using a

combination of trapezoidal quadrature and Newton iteration; rcsults

for the first few A0  are shown in Table 2. Note that there appear

to be many values (probably an infinite number), although these

seem to be concentrated within a finite annular region in the complex

AO plane. As the order increased, the values become.very close to

neighbouring values, and the computation became exceedingly difficult;

however, with increasing order the values of A0 do seem to be

approaching a finite value (indeed the author was unable to find

any solution for tA0 1 < 0.098). Note too that it is easy to show

using integration by parts that there arc no solutions to (7.35) as

iAoI *, whilst using the asymptotic expansion for the incomplete

gamma function (Abramowitz and Stcgun 1964) it is also possible to show

that no solutions exist as IAoI -4 0 either; this then confirms our

statement about the values of A0 being confined to an annular region in

complex A0  space.

Note also that both A0 and -complex conjugate {AO} are roots of

(7.35); however the latter family of solutions may be disregarded since

in all cases we require A0  to possess a positive real part.
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The second family of solutions for A0  occurs when

A0 = 0(33/
2). In this case, from (7.27), iro-11 << 1,

and indeed the wall (r=]) lies inide the transition layer.

Consequently, we are unable to use (7.31), but must consider the

transition layer in detail (although this is quite a routine task).

Suppose
S-3/2

AO 3 o, (7.37)

whcre AO = 0(1). Then defining

r= (r-l) - (7.38)

to leading order (5.10) reduces to

vo o 6 -i)

- X0 oo = 0. (7.39)
_XO - -1/3 c

Writing == (-Af) + - , (7.40)

and difFerentiating (7.39) with respect to , yields

V(]O(YCrj - 0 (]{];( =  0. (7.41)

The required solution (that is not exponentially large as a --4

is

= D Ai (0), (7.42)

(where D is independent of a).

The implementation of the boundary conditions on = 0 requires

VO ( =O) =0, and so

Ai -j ( _ = 0. (7.43)

A0

Now since the zeroes of the Airy function and its derivative are

confined exclusively to the negative real axis, then

Ai' (-n) = 0, (n=1,2,3 .... ) (7.44)

where the n arc real and positivc and tabulated by Abramowitz and
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Stegun (1964). Consequently

A(,= 2l+_ + 0(05), (7.45)2 n3/2

where the appropriate roots have been chosen to ensure boundedness

of the Airy function.

it is interesting (although, in some ways not too surprising) that

(7.45) is identical to the corresponding expression found in the

analogous pl anar study (Lam and Rot t 1960, Ackcrbcrg and Phi II ips

1972 and Goidstein 1983), although of course tie corresponding f(Z)

is quite different in the present case.

As a check orn the numerical results as 0 0, on Fig 8 the

variation of p3 / 2 A0 with P3 is shown (first three modes). It is very

clear that these results approach those given by (7.45) as -- 0.

The 0( - 1) family of results refer to higher modes, and thus it is

not realistically possible to compare our numerical results with this

family.

In the following section we draw some conclusions from this work.
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L_.Colus±ion

In this paper the effect of small amplitude freestream oscillations

on an otherwise steady boundary layer on an axisymmetric body has been

investigatcd. Particular attention has been focused on the far-

downstream cigcnvalues and cigcnsolutions. As note(] in Section 1, in

the case of the planar problem, two distinct familics of cigcnsolutions have

been presented, namely those originally considered by Lam and Rott (1960)

and those considered by Brown and Stewartson (1973a,b), with the former

family having decay rates that decrease with increasing order, whilst the

latter family have decay rates that increase with increasing order.

In the present study, cigenvalues appear to occur with decreasing decay

rate with increasing order. lowcvcr, some of the asymptotic work in

Section 7 (in particular that relevant to 13 -4 -, with A0 = 0(P 1))

does strongly suggest that a finite value of A0  is being approached

with increasing order. Indeed, the author was unable to obtain a

consistent asymptotic solution to (5.10) for 13 = 0(l), A0 -4 0, again

suggesting the finite limit of A0  with increasing order. This, in

some ways may be regarded as a rather more satisfactory state of

affairs than that found with the Lam and Rott (1960) eigensolutions,

which have decay rates that become diminisingly small with increasing order

(although see our comments, attributed to Goldstein et al 1983, in

Section 1). Further the 13-0 0 work of Section 7 does suggest

that all modes possess the same decay rate in this limit up to at least

second order.

However, it may well be that thc planar work of Brown and Stewartson

(1973a,b) could perhaps be extended to include the effects of curvature, to

yield a further (perhaps relaled) family of cigensolutions. A further

interesting study would be an investigation of the far-downstream evolution

of the eigensolutions. Just as in the planar case, these all become
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increasingly oscillatory far downstream, and will, as a consequence,

ultimately cease to be valid approximations to the Navier Stokes equations.

This will lead, presumably, to the formation of unstable Tollmicn-

Schl ichting waves, in a manner analogous to that described by Goldstein

(1983) in the planar case.

However, there are a number of (other) important differences between the

planar and the axisymmctric cigensolutions and cigenvalucs. Most

importantly the downstream (i.e. axial) behaviour of these cigensolutions

(described by f(Z)) which is quite different in the two cases, in the

axisymmetric case being given by (5.6) whilst in the planar Blasius case

f(x) = c Ax3 2xp, (8.1)

as shown by Goldstein (1983), (where x is the streamwise coordinate).

Note that if the basic flow were of the form IF = xm F(i), with Tj = y/xm, y

being Ihe transverse boundary layer variable, then using arguments similar

to this paper,

f(Z) = xp exp{-A x2 n-m+lI, for 2n-,n+l > 0. (8.2)
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ApDendix

Consider terms
.-AZ AOZ

O{h(Z) Z "e -1-Z p-1 (logZ) ql }

in (5.1) to enable us to determine the value of q.

It is found, after some algebra

L{ /I1} = p{ Too'
11 'VOI ' + rr r

r r2  r r2

+ q ' To 2r -1 '( J
2r r r2

+ A OQ' I QJul. Wot il '40r r r r2

Vlo r r 2  
r

+ AO yl() ' _ , I Jn4tf1'
r r r

+ Woo [ !"' !' ]-Wo [,, La.,o.
r r2 I or r r2

+ Y 0 !U1 A 1" +A A (AAr r2  r 2

+ L 'oo,' oo + 4 Too [ il " A.
2r r r2

(A.3)

Rcalling he xprssions obtaind already for p, Al, WOl, W1I0,

(A.1) leads to the following (slightly simplified) cquation

I ^ojo^o + AO KO, I Ao - (Al() + Klo) AO

r r r2

2r Wo o'+r r2

whe re
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Q(r) = WOOO.o 'V()O [ !00'l D' (A.3)

r r r 2

It is quite clear that 'll= 0(r2(log r)2) as r -4 -. To

simplify arguments later, we write

Wit = Wil1 (r) + q illli(r), (A.4)

where qllli(r) is any regular function which has the following behaviour

as r--4-

Pili(r) = - p02 + o(1). (A.5)

The governing equation for Wi11 may then be written in the form

L{Vll } = R3(r) + q R4 (r), (A.6)

where

R3(r) = Q(r) { A0 K10 A0 + A0 ko A10

- (AlO + KIo)Ao} - 1 I'O0'
I - r

r r2

I ~~I r Pa+ - 4' To() + Too [ -

2r r r2

and

R4 (r) = - Q(r) - L(VIl' 1). (A.7)

The boundary conditions that must be applied to this system are

vill(l) = - WPil"(1)

WiII'(1) = . villi (1

and that WPa1 --4 0 as r --, . (A.8)

The value of q is then determined by the condition that a solution

to this system exists.

Consider now the (complex conjugate of Ihc) adjoint to the

system (5.10), denoted by 4(+(r), and determined from
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+  + A0 log r

+ 2 r (A.9)

subject to the boundary conditions

V+r(r=l) = 0, y+'(r=l) = 1 (say), (A.10)

V " = o ((logr) -2) as r o ®. (A.1I1)

if we now further suppose, as we arc quite at libcry to so do (although

this simplifies, but is not crucial for our arguments) that

Vll II(1) = YI! I"'(I) = O, (A.12)

lhcn

J R3(r) y+(r) dr
00 =(A.13)

R4(r) iy+(r) dr

(llartman 1964, for example).

This (at least in principle) determines, or provides a means of

dcterminining the index of the logarithmic term multiplying f(Z).

At this stage it would also appear to be legitimate to set the function

h(Z) in (5.6) equal to a constant, although categorical determination

of this point seems difficult because of the algebraic complexity

in extending the analysis to higher order.
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Mode Asymptotic X1

1 .785 + .160i

11 .785 - 1.282i 1.266i

IIi .785 - 1.9341 - 1.959i

IV .785 - 2.340i - 2.364i

V .785 - 2.631i - 2.652i

VI .785 - 2.858" - 2.875i

Vil .785 - 3.044i - 3.057i

Vill .785 - 3.2001 - 3.211i

Table I Values of XI

A0

.1408 + .2262XI0-Ii

.7455x10"1 + .7991XI0-2 i

.5076XI0-I + .4181XI0-2i

.3848X10-I + .2603XI0"Ii

.3099XI0 -I + .1790X10-2i

.2594XI0 -I + .1313XI0-2 i

.2231XI0-I + .I007XI0-2 i

.1952XI0 "I + .7996XI0-3i

.1742XI0 -I + .6514XI0-3

.1571X10- I + .5418XI0-3i

Table 2 Values of A0
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